372 research outputs found

    Spin-orientation-dependent spatial structure of a magnetic acceptor state in a zincblende semiconductor

    Full text link
    The spin orientation of a magnetic dopant in a zincblende semiconductor strongly influences the spatial structure of an acceptor state bound to the dopant. The acceptor state has a roughly oblate shape with the short axis aligned with the dopant's core spin. For a Mn dopant in GaAs the local density of states at a site 8 angstrom away from the dopant can change by as much by 90% when the Mn spin orientation changes. These changes in the local density of states could be probed by scanning tunneling microscopy to infer the magnetic dopant's spin orientation.Comment: 5 pages, 4 figure

    Spin Polarization Phenomena and Pseudospin Quantum Hall Ferromagnetism in the HgTe Quantum Well

    Full text link
    The parallel field of a full spin polarization of the electron gas in a \Gamma8 conduction band of the HgTe quantum well was obtained from the magnetoresistance by three different ways in a zero and quasi-classical range of perpendicular field component Bper. In the quantum Hall range of Bper the spin polarization manifests in anticrossings of magnetic levels, which were found to strongly nonmonotonously depend on Bper.Comment: to be published in AIP Conf. Proc.: 15-th International Conference on Narrow Gap Systems (NGS-15

    Magnetotransport in Double Quantum Well with Inverted Energy Spectrum: HgTe/CdHgTe

    Full text link
    We present the first experimental study of the double-quantum-well (DQW) system made of 2D layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated by an applied gate voltage VgV_g. This large overlap manifests itself in a much higher critical field BcB_c separating the range above it where the quantum peculiarities shift linearly with VgV_g and the range below with a complicated behavior. In the latter case the NN-shaped and double-NN-shaped structures in the Hall magnetoresistance ρxy(B)\rho_{xy}(B) are observed with their scale in field pronouncedly enlarged as compared to the pictures observed in an analogous single QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative VgV_g as revealed from fits to the low-field NN-shaped ρxy(B)\rho_{xy}(B) and from the Fourier analysis of oscillations in ρxx(B)\rho_{xx}(B). A peculiar feature here is that the found electron density nn remains almost constant in the whole range of investigated VgV_g while the hole density pp drops down from the value a factor of 6 larger than nn at extreme negative VgV_g to almost zero at extreme positive VgV_g passing through the charge neutrality point. We show that this difference between nn and pp stems from an order of magnitude larger density of states for holes in the lateral valence band maxima than for electrons in the conduction band minimum. We interpret the observed reentrant sign-alternating ρxy(B)\rho_{xy}(B) between electronic and hole conductivities and its zero resistivity state in the quantum Hall range of fields on the basis of a calculated picture of magnetic levels in a DQW.Comment: 15 pages, 13 figure

    Effect of exchange electron-electron interaction on conductivity of InGaAs single and double quantum wells in ballistic regime

    Full text link
    We report an experimental study of quantum conductivity corrections for two-dimensional electron gas in a GaAs/InGaAs/GaAs single and double quantum wells in a wide temperature range (1.8-100) K. We perform a comparison of our experimental data for the longitudinal conductivity at zero magnetic field to the theory of interaction-induced corrections to th transport coefficients. In the temperature range from 10 K up to (45-60) K, wich covers the ballistic interaction regimes for our samples, a rather good agreement between the theory and our experimental results has been found

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&

    Spatial structure of an individual Mn acceptor in GaAs

    Get PDF
    The wave function of a hole bound to an individual Mn acceptor in GaAs is spatially mapped by scanning tunneling microscopy at room temperature and an anisotropic, cross-like shape is observed. The spatial structure is compared with that from an envelope-function, effective mass model, and from a tight-binding model. This demonstrates that anisotropy arising from the cubic symmetry of the GaAs crystal produces the cross-like shape for the hole wave-function. Thus the coupling between Mn dopants in GaMnAs mediated by such holes will be highly anisotropic.Comment: 3 figures, submitted to PR

    Effects of spin polarization in the HgTe quantum well

    Full text link
    Magnetoresistivity features connected with the spin level coincidences under tilted fields in a Γ 8 conduction band of the HgTe quantum well were found to align along straight trajectories in a (B ⊥,B) plane between the field components perpendicular and parallel to the layer, meaning a linear spin polarization dependence on a magnetic field. Among the trajectories is a noticeable set of lines descending from a single point on the Baxis, which is shown to yield a field of the full spin polarization of the electronic system, in agreement with the data on the electron redistribution between spin subbands obtained from Fourier transforms of oscillations along circle trajectories in the (B ⊥,B) plane and with the point on the magnetoresistivity under pure Bseparating a complicated weak field dependence from the monotonous one. The whole picture of coincidences is well described by the isotropic g factor, although its value is twice as small as that obtained from oscillations under pure perpendicular fields. The discrepancy is attributed to different manifestations of spin polarization phenomena in the coincidences and within the exchange-enhanced spin gaps. In the quantum Hall range of B ⊥, the spin polarization manifests in anticrossings of magnetic levels, which were found to depend dramatically nonmonotonously on B ⊥. © 2012 American Physical Society
    corecore